Subfields of Nondegenerate Tame Semiramified Division Algebras
نویسنده
چکیده
We show in this article that in many cases the subfields of a nondegenerate tame semiramified division algebra of prime power degree over a Henselian valued field are inertial field extensions of the center [Th. 2.5, Th. 2.12 and Prop. 2.16 ].
منابع مشابه
Nondegenerate semiramified valued and graded division algebras
In this paper, we define what we call (non)degenerate valued and graded division algebras [Definition 3.1] and use them to give examples of division p-algebras that are not tensor product of cyclic algebras [Corollary 3.17] and examples of indecomposable division algebras of prime exponent [Theorem 5.2, Corollary 5.3 and Remark 5.5]. We give also, many results concerning subfields of these divi...
متن کاملKummer subfields of tame division algebras over Henselian valued fields
By generalizing the method used by Tignol and Amitsur in [TA85], we determine necessary and sufficient conditions for an arbitrary tame central division algebra D over a Henselian valued field E to have Kummer subfields [Corollary 2.11 and Corollary 2.12]. We prove also that if D is a tame semiramified division algebra of prime power degree p over E such that p 6= char(Ē) and rk(ΓD/ΓF ) ≥ 3 [re...
متن کاملNicely semiramified division algebras over Henselian fields
We recall that a nicely semiramified division algebra is defined to be a defectless finitedimensional valued central division algebra D over a field E with inertial and totally ramified radical-type (TRRT) maximal subfields [7, Definition, page 149]. Equivalent statements to this definition were given in [7, Theorem 4.4] when the field E is Henselian. These division algebras, as claimed in [7, ...
متن کاملOn normalizers of maximal subfields of division algebras
Here, we investigate a conjecture posed by Amiri and Ariannejad claiming that if every maximal subfield of a division ring $D$ has trivial normalizer, then $D$ is commutative. Using Amitsur classification of finite subgroups of division rings, it is essentially shown that if $D$ is finite dimensional over its center then it contains a maximal subfield with non-trivial normalize...
متن کاملOn the transcendence degree of subfields of division algebras
Abstract We study subfields of quotient division algebras of domains of finite GK dimension and introduce a combinatorial property we call the straightening property. We show that many classes of algebras have this straightening property and show that if A is a domain of GK dimension d with this property that is not PI, then the maximal subfields of the quotient division algebra of A have trans...
متن کامل